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‡ Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-01, Japan
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Abstract. We consider the scaling Lee–Yang model. It corresponds to the unique perturbation
of the minimal CFT modelM2,5. This model is not unitary. We are using an expression
for form factors in terms of symmetric polynomials in order to obtain a closed expression
for the correlation function of the trace of the energy-momentum tensor. This expression is
a determinant of an integral operator. Similar determinant representations were proven to be
useful not only for quantum correlation functions but also in matrix models.

1. Introduction

The theory of massive, relativistic, integrable models is an important part of modern quantum
field theory [21–28]. Scattering matrices in these models factorize into a product of two-
body S-matrices [21]. Form factors can be calculated on the basis of a bootstrap approach
[21–28].

The purpose of this letter is to calculate correlation functions. As usual, correlation
functions can be represented as an infinite series of form factor contributions. In this
letter we sum up all these contributions and obtain a closed expression for the correlation
function of the energy-momentum tensor. We follow the approach of [5]. We introduce
an auxiliary Fock space and auxiliary Bose fields (we shall call them dual fields). These
fields help us to represent the form factor decomposition of the correlation function in a
form similar to the ‘free fermionic’ case. This approach was developed in [29, 30, 10].
Finally, the correlation function is represented as a vacuum mean value (in the auxiliary
Fock space) of a determinant of an integral operator (4.3). The determinant representation is
the basis for a nonperturbative analysis of correlation functions. It provides the opportunity
to describe correlation functions by differential equations, to calculate asymptotics and to
discover hidden symmetries of the model. Painlevé differential equations were obtained
for correlation functions of the Ising model [6] and of the impenetrable Bose gas [7] on
the basis of the determinant representation. Later it was shown that a similar Painlevé
equation describes correlation inXXZ Heisenberg spin chain at magnetic field close to
critical [12]. In sl2 Gaudin model a generating function of correlators was represented as
a determinant [15]. The determinant representation is the unique method of calculation of
time- and temperature-dependent correlation functions (for moderate temperatures). This
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method allowed us to calculate time- and temperature-dependent correlation fucntions in
the Bose gas with delta interaction [13], in the one-dimensional (1D) quantum Ising model
[16], in theXY model [11] and in the Hubbard model [8]. Determinant representations
were proven to be useful not only for the theory of quantum correlation functions [6–16] but
also in matrix models [17–20]. In matrix models the determinant representation provides a
natural method for the description of level spacing.

The scaling Lee–Yang model can be described by theφ1,3-perturbation of the non-
unitary minimal modelM2,5 [1]. The theory is known to be integrable and is described
by factorizable scattering theory of only one kind of particle of massm. The two-body
scattering amplitude is given by [1]

S(β) = sinhβ + i sin(2π/3)

sinhβ − i sin(2π/3)
. (1.1)

The pole atβ = 2π i/3 corresponds to a bound state. The residue at the pole is negative.
This means that, as a consequences of non-unitarity the three-point coupling is imaginary.

The S-matrix can be obtained from the breather–breatherS-matrix of the sine Gordon
model [2]. The simplest example of breather–breatherS-matrix of the sine Gordon model
was first calculated in [3].

Form factors for the trace of the energy-momentum tensor2 = T µµ /4 are defined as
matrix elements between the vacuum state〈vac| and n particle states characterized by
rapiditiesβi (i = 1, . . . , n):

Fn(β1, . . . , βn) = 〈vac|2(0)|β1, . . . , βn〉. (1.2)

The multiparticle form factorsFn were calculated in [2, 4]:

Fn(β1, . . . , βn) = HnQn(x1, . . . , xn)
∏
i<j

f (βi − βj )
xi + xj (1.3)

wherexi = eβi , i = 1, . . . , n,

Hn = −πm
2

4
√

3

(
i31/4

21/2v(0)

)n
. (1.4)

The functionf (β) is given by

f (β) = coshβ − 1

coshβ + 1
2

v(iπ − β)v(−iπ + β) (1.5)

where

v(β) = exp

(
2
∫ ∞

0

dt

t
eiβt/π sinh(t/2) sinh(t/3) sinh(t/6)

sinh2 t

)
. (1.6)

The functionf (β) has a single pole in the strip 06 Imβ < π at β = 2π i/3 and a single
zero atβ = 0.

We shall use the elementary symmetric polynomialsσk(x1, . . . , xn), which are defined
as

n∏
j=1

(x + xj ) =
∑
k∈Z

xn−kσk(x1, . . . , xn).

It is important to bear in mind the fact thatσk is equal to zero ifk < 0 or k > n. The
symmetric polynomialsQn(x1, . . . , xn) arising in the formula for form factors can be written
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as:
Q0 = 1

Q1 = 1

Q2 = σ1

Qn = σ1σn−1Pn n > 3

(1.7)

where

Pn = detn−3(6ij ). (1.8)

Here6ij is a matrix of dimension (n− 3). Its entries are equal to

6ij = σ3i−2j+1 16 i, j 6 n− 3. (1.9)

The indexn− 3 in the expression detn−3 denotes the dimension of the matrix6ij .
After Wick rotation to the Euclidean space, the correlation function of the operator2

can be presented as an infinite series of form factors contributions

〈2(x)2(0)〉 =
∞∑
n=0

∫
dnβ

n!(2π)n
〈vac|2(0)|β1, . . . , βn〉〈βn, . . . , β1|2(0)| vac〉

× exp

[
−mr

n∑
j=1

coshβj

]
(1.10)

wherer = (xµxµ)1/2.
In this letter we sum up this series explicitly. This letter is organized as follows.

Section 2 is devoted to a transformation of the form factors to a form, which is convenient
for summation. In section 3 we introduce auxiliary quantum operators—dual fields—in
order to factorize an expression for the correlation function and to represent it in a form
similar to the ‘free fermionic’ case. In section 4 we sum up the series (1.10) to a Fredholm
determinant. In section 5 we consider an example, which illustrates how to use the Fredholm
determinant representation and dual fields.

2. A transformation of the form factor

A determinant of a linear integral operatorI + V can be decomposed into a Taylor series:

det(I + V ) =
∞∑
n=0

∫
dx1 · · ·dxn

n!
detn


V (x1, x1) · · · V (x1, xn)

V (x2, x1) · · · V (x2, xn)

· · ·
V (xn, x1) · · · V (xn, xn)

 . (2.1)

In order to obtain a determinant representation for the correlation function we shall represent
the form factor expansion (1.10) in the form (2.1). Determinants of integral operators, which
we consider can be called Fredholm determinants.

The form factors (1.3) are proportional to the polynomialsQn (1.7). The polynomial
Qn for n > 3 is proportional to the determinant of the matrix6ij (1.9).

Let us define a new matrixM:

Mij = σ3i−2j−1 16 i, j 6 n. (2.2)

The dimension of the matrix isn. Note thatM1j = δ1,j , M2j = δ1,j σ3 + δ2,j σ1 and
Mnj = δn,j σn−1 for j = 1, . . . , n. Using the relationMij = 6i−2,j−2 (i, j = 3, . . . , n− 1),
one can show that

Qn = detnM n > 0. (2.3)
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The matrixMij containsn2 different functions, depending on the same set of arguments
x1, . . . , xn.

The main aim of this and the next sections is to transform the matrix (2.2) to such a
form, that entries of a new matrix would be parametrized by a single function, depending
on different sets of variables (likeV (xi, xj ) in (2.1))

Mij → D̂ij D̂ij = D̂(xi, xj ). (2.4)

In order to study correlation functions, we need to find the square of the polynomials
Qn:

Q2
n = detn(Cij ) (2.5)

where

Cjk = (MTM)jk =
n∑
i=1

σ3i−2j−1σ3i−2k−1 =
n∑

i=−∞
σ3i−2j−1σ3i−2k−1. (2.6)

Here we used the relationσk = 0 for k < 0.
Note that the elementary symmetric polynomials can be expressed as:

σk = 1

2π i

∮
γ

dz

zn−k+1

n∏
m=1

(z+ xm) (2.7)

where the integration contourγ is a circle around the origin in the positive direction.
Substituting the above expression into (2.6) and summing up the infinite series, we have

Cjk =
∮
γ

dz1

2π i

∮
γ

dz2

2π i

z
2n−2j+1
1 z2n−2k+1

2

(z1z2)3− 1

n∏
m=1

(z1+ xm)(z2+ xm). (2.8)

Here we have chosen the radius of the circleγ to be greater than one in order for the series
to converge.

The matrixC still depends onn2 different functionsCjk. However, this matrix can be
transformed to a more convenient form. Let us introduce the following matrix

Ajk = 1

(n− j)!
dn−j

d(x2)n−j

n∏
m6=k

(x2+ x2
m)

∣∣∣∣
x2=0

(2.9)

which has a determinant

detA =
n∏
i<j

(x2
i − x2

j ). (2.10)

Using this matrix, we define another matrixD, which differs from C by a linear
transformation

D = ATCA. (2.11)

We have an explicit expression for matrix elements of D:

Djk = 1

(2π i)2

∮
d2z

z1z2

z3
1z

3
2 − 1

Y (z1, xj )Y (z2, xk) (2.12)

where

Y (z, x) = J (z)

z2+ x2
(2.13)
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and

J (z) =
n∏
a=1

(z+ xa)(z2+ x2
a ). (2.14)

Taking the integral with respect toz2, we have (after the symmetrization of the integrand)

Djk = 1

18π i

∮
γ

dz

z

( 3∑
l=1

ωlY (ω−lz, xj )
)( 3∑

m=1

ωmY(ω−mz−1, xk)

)
. (2.15)

Hereω = e2π i/3 and the integration contourγ is a circle whose radius is larger than 1.
Explicitly, the sum overl can be written as

3∑
l=1

ωlY (ω−lz, x) = Y (z, x)+ ωY(ω−1z, x)+ ω−1Y (ωz, x). (2.16)

The determinants of matricesC andD are related by

detnC =
n∏
i<j

(x2
i − x2

j )
−2detnD. (2.17)

Thus, we obtain a determinant representation forQ2
n,

Q2
n =

detnD∏n
i<j (x

2
i − x2

j )
2
. (2.18)

3. Dual fields

The entries of the matrixDjk are parametrized now by a single functionD. However,
the elementDjk, is not yet a function of only two arguments, because of the product
J (z) = ∏n

m=1(z + xm)(z2 + x2
m). This product depends on allxm. In order to omit this

product we introduce an auxiliary Fock space and auxiliary quantum operators—dual fields.
Let us define

81(x) = q1(x)+ p2(x) 82(x) = q2(x)+ p1(x) (3.1)

where the operatorspj (x) andqj (x) act on the canonical Bose Fock space in the following
way

(0|qj (x) = 0 pj (x)|0) = 0. (3.2)

Non-zero commutators are given by

[p1(x), q1(y)] = [p2(x), q2(y)] = ξ(x, y) = log((x + y)(x2+ y2)). (3.3)

Due to the symmetry of the functionξ(x, y) = ξ(y, x), all fields8j(x) commute with each
other

[8j(x),8k(y)] = 0 j, k = 1, 2. (3.4)

Dual fields are linear combinations of canonical Bose fields, see [10, p 210].
Instead ofY (z, x) let us define an operator-valued function

Ŷ (z, x) = e81(z)

z2+ x2
. (3.5)

Instead ofDjk (2.15), we shall introduce an operator in the auxiliary Fock space,

D̂(x, y) = 1

18π i

∮
dz

z

( 3∑
l=1

ωlŶ (ω−lz, x)
)( 3∑

m=1

ωmŶ (ω−mz−1, y)

)
. (3.6)
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It is easy to show that an exponent of dual field acts like a shift operator. Namely, if
g(81(y)) is a function of81(y) then(

0

∣∣∣∣ n∏
m=1

e82(xm)g(81(y))

∣∣∣∣0) = (0

∣∣∣∣g(q1(y)+
n∑

m=1

ξ(xm, y)

)∣∣∣∣0) = g(logJ (y)).

Using this property of dual fields one can remove the productsJ (z) from the matrixDjk.
For a more detailed derivation one should refer to formula (3.6) of [5].

Standard arguments of quantum field theory show that

detnD = (0|detn(D̂(xj , xk)e
1
282(xj )+ 1

282(xk))|0). (3.7)

Heretofore, we have written theQ2
n factor of |Fn|2 as a determinant. The absolute value

of the form factor is equal to

|Fn(β1, . . . , βn)|2 = |Hn|2Q2
n

∏
i<j

∣∣∣∣f (βi − βj )(xi + xj )
∣∣∣∣2

= |Hn|2detnD
∏
i<j

∣∣∣∣∣ f (βi − βj )
(x2
i − x2

j )(xi + xj )

∣∣∣∣∣
2

. (3.8)

In order to factorize the double product part, we introduce another dual field

8̃0(x) = q̃0(x)+ p̃0(x). (3.9)

As usual

(0|q̃0(x) = 0 p̃0(x)|0) = 0. (3.10)

The operators̃q0(x) and p̃0(y) commute with allpj andqj (j = 1, 2). The only non-zero
commutator is

[p̃0(x), q̃0(y)] = η(x, y) (3.11)

where

η(x, y) = η(y, x) = 2 log

∣∣∣∣∣ f (log x
y
)

(x2− y2)(x + y)

∣∣∣∣∣ . (3.12)

Here we have used the fact that|f (β)| is a symmetric function,|f (−β)| = |f (β)|. It is
worth mentioning that the right-hand side of (3.12) has no singularity atx = y, because
f (β) has a zero of first order atβ = 0. Using some of the equations for minimal form
factor from [4]

f (β)f (β + iπ) = sinhβ

sinhβ − i sin(π/3)
(3.13)

andf (iπ) = 4v2(0), we can see that

f ′(0) = i

2
√

3v2(0)
. (3.14)

Hence

η(x, x) = −2 log|λx3| (3.15)

where

λ = 8
√

3v2(0). (3.16)
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The newly introduced dual field also mutually commute

[8̃0(x), 8̃0(y)] = 0= [8̃0(x),8j (y)]. (3.17)

Due to the Campbell–Hausdorff formula, we have(
0

∣∣∣∣ n∏
m=1

e8̃0(xm)

∣∣∣∣0) = n∏
i,j=1

e
1
2η(xi ,xj ) = λ−n

n∏
m=1

x−3
m

n∏
i<j

∣∣∣∣∣ f (log xi
xj
)

(x2
i − x2

j )(xi + xj )

∣∣∣∣∣
2

. (3.18)

Combining these results, we can represent the square of the absolute value of the form
factor as a determinant:

|Fn(β1, . . . , βn)|2 =
(
πm2

4
√

3

)2

12n(0|detn(x
3/2
j x

3/2
k D̂(xj , xk)e

1
280(xj )+ 1

280(xk))|0).

Here

80(x) = 8̃0(x)+82(x). (3.19)

So we managed to represent the square of the absolute value of the form factor as a
determinant, similar to one of the terms on the right-hand side of (2.1). In the next section
we shall sum up all contributions of the form factors and obtain a determinant representation
for the correlation function.

4. The determinant representation

Because the scaling Lee–Yang model is a non-unitary theory, the normalization constant
Hn (1.4) is pure imaginary forn odd. This leads to the following relation:

〈vac|2(0)|β1, . . . , βn〉〈βn, . . . , β1|2(0)| vac〉 = (−1)n|Fn(β1, . . . , βn)|2. (4.1)

Then the correlation function of2 can be written as

〈2(x)2(0)〉 =
∞∑
n=0

(−1)n
∫

dnβ

n!(2π)n
|Fn(β1, . . . , βn)|2

n∏
j=1

e−θ(xj )

=
(
πm2

4
√

3

)2(
0

∣∣∣∣ ∞∑
n=0

∫ ∞
0

dnx

n!

(
− 6

π

)n
× det

n
(xjxkD̂(xj , xk)e

1
2 (80(xj )+80(xk))e−

1
2 (θ(xj )+θ(xk)))

∣∣0).
where

θ(x) = mr

2
(x + x−1). (4.2)

Now we can use (2.1) in order to sum up. Finally, we obtain a determinant representation
in terms of an integral operator (Fredholm determinant)

〈2(x)2(0)〉 =
(
πm2

4
√

3

)2

(0|det(I − Û )|0). (4.3)

The operatorÛ acts on a functiong(x) as

[Ûg](x) =
∫ ∞

0
dy Û(x, y)g(y). (4.4)
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The kernel of the integral operator̂U(x, y) is equal to

Û (x, y) = 6

π
xyD̂(x, y)e

1
2 (80(x)+80(y))e−

1
2 (θ(x)+θ(y)) (4.5)

whereD̂ is given by (3.6)

D̂(x, y) = 1

18π i

∮
dz

z

( 3∑
l=1

ωlŶ (ω−lz, x)
)( 3∑

m=1

ωmŶ (ω−mz−1, y)

)
(4.6)

and

Ŷ (z, x) = e81(z)

z2+ x2
. (4.7)

The dual fields80(x) and81(x) were defined in the section 3 (see (3.1) and (3.9)). The
main property of these dual fields is that they commute with each other, therefore the
Fredholm determinant det(I− Û ) is well defined. The det(I− Û ) is an operator in auxiliary
Fock space and it also belongs to an Abelian subalgebra. On the other hand, the vacuum
expectation value of these operators is non-trivial. It follows from the commutation relations
(3.3), (3.11), that in order to calculate the vacuum expectation value, one should use the
following prescription(

0

∣∣∣∣ M1∏
a=1

e80(xa)
M2∏
b=1

e81(xb)

∣∣∣∣0) = M1∏
a=1

M1∏
b=1

e
1
2η(xa,xb)

M1∏
a=1

M2∏
b=1

eξ(xa,xb). (4.8)

Here

η(x, y) = 2 log

∣∣∣∣∣ f (log x
y
)

(x2− y2)(x + y)

∣∣∣∣∣ (4.9)

and

ξ(x, y) = log((x + y)(x2+ y2)). (4.10)

We saw that an introduction of an auxiliary Fock space helped us to calculate the correlation
function. It would be interesting to understand a relation of the auxiliary Bose fields to vertex
operators which appear in an alternative expression for correlation functions [31] and form
factors [26] based on quantum group approach.

5. Large r-asymptotic

In order to illustrate how to handle dual quantum fields we shall rederive the long-distance
asymptotic from the determinant representation.

Using the technique developed in [5], we calculate the long-distance asymptotic of the
correlation function.

The determinant can be written as

det(I − Û (x, y)) = det(I − Ũ (z1, z2)) (5.1)

where

Ũ (z1, z2) =
∫ ∞

0
dx P1(z1, x)P2(z2, x) (5.2)
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and

P1(z, x) = x

3π2iz

( 3∑
l=1

ωlŶ (ω−lz, x)
)

e
1
280(x)− 1

2θ(x) (5.3)

P2(z, y) = y
( 3∑

l=1

ωlŶ (ω−lz−1, y)

)
e

1
280(y)− 1

2θ(y). (5.4)

The integral operator̃U(z1, z2) acts on a functiong(z) as

[Ũg](z1) =
∮
Ũ (z1, z2)g(z2)dz2. (5.5)

Here the integration contour is a circle around zero in positive direction.
In the limit r → ∞, we evaluate the integral (5.2) by the saddle-point method. The

saddle point of the functionθ(x) is x = 1. Hence, we can estimate the integral in (5.2) as

Ũ (z1, z2) = P1(z1, 1)P2(z2, 1)

(√
2π

mr
+O(r−3/2)

)
. (5.6)

Thus, for the larger asymptotic the kernelŨ (z1, z2) becomes a 1D projector, and its
Fredholm determinant is equal to

det(I − Ũ )→ 1−
∮

dz Ũ(z, z). (5.7)

Using the commutation relations between dual fields, we can evaluate(0|Ũ (z, z)|0) as
follows

(0|Ũ (z, z)|0) = e−mr

3π2iλz

√
2π

mr
Y1(z)Y1(z

−1)+ · · · (5.8)

where

Y1(z) =
3∑
l=1

ωl(ω−lz+ 1) = 3z. (5.9)

The above result leads to the asymptotic form of the vacuum mean value of the Fredholm
determinant

(0|det(I − Ũ )|0) = 1−
√

3

2v2(0)

e−mr√
2πmr

+ · · · (5.10)

which agrees with the large-distance contribution from zero- and one-particle states [4].

6. Summary

We considered the scaling Lee–Yang model and obtained the determinant representation
for the correlation function of the trace of the energy-momentum tensor. We think
that this representation will be useful for the study of hidden symmetries of the model.
For a clear understanding of how to modify the determinant representation in order to
include temperature dependence please refer to [10]. We think that the determinant
representation will be useful for the evaluation of long-time asymptotic of temperature-
dependent correlation functions. We believe that determinant representation is the universal
language for the description of quantum correlation functions of integrable (exactly solvable)
models of quantum field theory.

We are grateful to A Berkovich and N Slavnov for useful discussions. This work was
supported by NSF grant no PHY-9605226.
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